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Abstract

A  Finite Element Method (FEM) is presented to determine reflection and

transmission coefficients of  rectangular waveguide junction discontinuities.  An H-plane

discontinuity, an E-plane ridge discontinuity and a step discontinuity in a concentric

rectangular waveguide junction are analyzed using the FEM procedure.   Also, reflection and

transmission coefficients due to presence of a gap between two sections of a rectangular

waveguide are determined using the FEM.  The numerical results obtained by the present

method are in excellent agreement with the earlier published results.  The numerical results

obtained by the FEM are  compared with the numerical results obtained using Mode Matching

Method (MMM) and also with the measured data.

1.0 Introduction

A slotted rectangular waveguide array antenna is  being proposed to be used in a

microwave scattrometer for soil moisture measurements.  During the launch phase of such  a

scatterometer, the slotted waveguide should be folded.  After full deployment of the

scatterometer, the waveguide must be unfolded to its full length.  Due to the mechanical

imperfection of the joints and hinges,  there will be misalignments and gaps.  These gaps and

misalignments will affect the performance of the slot array.  It is the purpose of this report to

analyze the effects of the gaps and misalignments on the transmission line properties of

rectangular waveguide sections.  However, the effect of these gaps and misaligmnents on the

performance of the slot array will not be considered here.
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The types of misalignments and gaps that may occur after unfolding the various sections

of rectangular waveguide are shown in figure 1

Figure 1(a) Rectangular waveguide with misalignment in x-direction.
                    (Waveguide flanges are not shown)

Input Wave

Output Wave

X
Y

Input Wave

X
Y

Figure1(b) Rectangular waveguide junction with misalignment in
                  y-dimension.
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For assessment of  the effects of such discontinuities on the transmission and reflection

properties of rectangular waveguide, many analytical techniques can be used.  The modelling of

waveguide junction discontinuities  has been a subject that has been studied considerably in the

past.  An equivalent circuit approach based on an electrostatic approximation and variational

principle [1-4] has been used to analyze these discontinuities.  However, these approximate

techniques  may not  be accurate for electrically large discontinuities.   Furthermore, only single

mode interactions are accounted in these simple representations .  Higher order mode interactions

are taken into account by using the mode matching technique[5,6].  In the MMM,  the fields in

each region across the junction are expressed in terms of infinite number of waveguide modal

functions.      Application of continuity of tangential components of electric and magnetic fields

across the junction  in conjunction with the Method of Moments (MoM) yields a matrix equation

with tangential fields over the junction as an unknown variable.  From the solution of the matrix

Input Wave Output Wave

Gap Between Two Sections

Figure 1(c) Rectangular waveguide junction with a gap.
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equation, the reflection and transmission properties of the waveguide junction are determined.

The resulting code, although accurate, can be computationally  inefficient.   There are different

versions of the MMM reported in the literature such as generalized scattering matrix (GSM) [7]

techniques,  multimodal network representation methods using  admittance, or impedance matrix

representation [8-10].  The MMM is mostly applied to analyze zero-thickness discontinuities at

the junctions.  For  non-zero thickness discontinuties in the direction of propagation,  the mode

matching techniques become quite involved.  Furthermore, it is cumbersome to apply the MMM

when the waveguide junctions are loaded with three-dimensional arbitrarily-shaped

discontinuities.  In such cases, a numerical technique such as the FEM [11-13] is more versatile

and easily adaptable to changes in the structures of discontinuities.  In this report, a numerical

technique using the FEM  is developed to analyze  step discontinuities as well as three-

dimensional arbitrarily-shaped discontinuities present at the rectangular waveguide junctions.

 In [11], reflection and transmission characteristics of metal wedges in a rectangular

waveguide were studied using H-field FEM formulation.  It has been shown in [11]  that the

vector edge based formulation eliminates the  spurious solutions.  In this report, the FEM using

the E-field formulation is developed to analyze rectangular waveguide junction discontinuities.

Because of the metal boundaries of rectangular waveguide, the E-formulation results in fewer

unknowns compared with the H-field formulation of [11].

The remainder of this report is organized as follows.  The FEM formulation of the

waveguide junction problem using the weak form of the Helmoltz wave equation is developed in

section 2.  Also in section 2, MMM formulation is presented to determine reflection and

transmission coefficients of transverse discontinuities in a rectangular waveguide.  Numerical

results on the transmission and reflection coefficients for E-plane and  H-plane step
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discontinuities are given in section 3 along with earlier published results for comparison.  Also in

section 3, the experimental results on some of the waveguide junction discontinuities measured in

the Material Measurement Laboratory of the Electromagnetics Research Branch are compared

with the results obatined using the present approach.  The report concludes in section 4 with

remarks on advantages and limitations of the present technique.

2.0 Theory
2.1 Finite Element Formulation:

In this section,  the FEM will be used to determine the reflection and transmission

coefficients of  the rectangular waveguide junction discontinuity shown in Figure 2.

  It is assumed that the waveguide is excited by a dominant TE10 mode from the left.

To analyze the junction discontinuity, the junction is assumed to be enclosed by two planes: P1

and P2.  The planes P1 and P2 divide the waveguide region into three regions as shown in Figure

2.    The air gap at the junction between two waveguide sections causes leakage of electromag-

TE10
Mode

PlaneP1

Plane
P2

TE10 ModeIncident
To Matched Load

Figure 2 Geometry of rectangular waveguide junction with step discontinuity
               and gap.

Region I Region II
Region III

ZX

z = z1

Circular Flang

S3

Radiating
Aperture
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netic energy which is accounted in the present formulation.    Using the waveguide vector modal

functions, the transverse electromagnetic field in  region I  is expressed as [16]

                                                                 + (1)

- (2)

In deriving equations (1) and (2), it is assumed that only the dominant mode is incident on the

interface P1 and the   is the amplitude of reflected modes at the  z=0 plane.  and

appearing in equations (1) and (2) are respectively the characteristic admittance and propagation

constant for  mode and are defined in [16].   The unknown complex modal amplitude  may

be obtained in terms of the transverse electric field over the plane P 1 as follows

(3)

(4)

where  is the surface area over the plane .
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(5)

(6)

where   is the amplitude of transmitted mode at the  z=z2 plane,  and  appearing in

equations (5) and (6) are respectively the characteristic admittance and propagation constant for

 mode for output waveguide and are defined in [16].   The unknown complex modal amplitude

 may be obtained in terms of the transverse electric field over the plane P 2 as follows

where  is the surface area over the plane .

The electromagnetic field inside  region II is obtained using the FEM formulation [17].
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(8)

 where   is the cross sectional area at plane  P2,  is the surface area of radiating aperture,

and  is the magnetic field in the radiating aperture .      In order to solve the equation (9),

the volume enclosed by  region II is discretized by using first-order tetrahedral elements.  The

electric field in a single tetrahedron is represented as

(9)

where   are the six complex coefficients of electric field associated with the six edges of the tet-

rahedron, and  is the vector  basis function associated with the mth edge of  the tetra-

hedron. A detailed  derivation for the expressions for  is given in reference [17].

Substituting equation (10) into equation (9), integration over the volume of one tetrahedron

results in the element matrix equation

(10)
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               +

                            + (11)

(12)

These element matrices can be assembled over all the tetrahedral elements in the region II to

obtain a global matrix equation

(13)

The solution vector   of the matrix equation (14) is then used in equation (3)  to determine the

reflection coefficient at the reference plane  as

(14)

The transmission coefficient at the plane  is obtain as [18]
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In this section the MMM for  the rectangular  waveguide junction discontinuities is

presented.   Since the modelling of air gap between the two waveguide sections using the  MMM

is quite involved,   the junction discontinuities of E- and  H-plane steps types (as shown in fig. 3)

are only  considered.

The transverse components of electric and magnetic fields in the region I and II can be written as

                                                                 + (19)

- (20)

In deriving equations (1) and (2) it is assumed that only the dominant mode is incident from the

left  and the   is the amplitude of reflected modes at the  z=0 plane.  and  appearing in

equations (1) and (2) are respectively the characteristic admittance and propagation constant for

TE10
Mode

TE10 ModeIncident
To Matched Load

Region I Region II

Z

X

Figure 3 Geometry of waveguide junction discontinuity without an air gap.
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 mode and are defined in [16].   The unknown complex modal amplitude  may be obtained

in terms of the transverse electric field over the z = 0 plane as follows

(21)

(22)

where  is the surface area over the z = 0 plane.

Likewise, the transverse components of electric and magnetic fields in the region II

can be written as [16]
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over the plane z = 0 as

(26)

where  is unknown complex coefficient, and  is the vector mode function for a rectangular
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(32)

(33)

Equating the tangential magnetic fields across the aperture yields an integral equation with

unknowns as

                                         + (34)

Taking cross product of  (35) with  and selecting  as a testing function, the integral equation
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(37)

3.0  Numerical Results

To validate the present technique,  we first present numerical results on the reflection

and transmission coefficients for H-plane discontinuity in a x-band rectangular waveguide as

shown in Figure 3.  This geometry  has been solved by earlier researchers using the  MMM and

CAD-oriented equivalent circuit modelling[19].

 For the present analysis, the plane P1 was selected at z = 0 and the plane P2 was selected at z = 1

cm.  The junction was at z = 0.5 cm.  The reflection and transmission coefficients calculated using

the present approach are shown in Figure 4 along with the results obatined by the MMM [19].

There is an excellent agreement between the results of two methods.  The transmission curve

shown as a dotted line is calculated by .  Seven

hundred twenty eight  tetrahedral were  used to discretize the FEM region.
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Waveguide I

Waveguide II

z
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Plane P1
Plane P2

Figure 3 Top view of an H-plane discontinuity in a rectangular waveguide.
               Waveguide I ( Wx1 = 2.286  cm, Wy = 1.02cm), Waveguide II ( Wx2 = 1.5 cm,
               Wy = 1.02 cm)
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TE10Mode
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For further validation of the code, an  E-plane ridge waveguide discontinuity in a

rectangular waveguide,  as shown in Figure 5,   is considered.  The transmission coefficient in the

presence of  the metallic ridge is calculated using the present code as a function of frequency and

is presented in Figure 6 along with the earlier published data.  There is good agreement between

the results obtained by the present method and earlier published data.  For the numerical

calculations, the planes P1  and P2 were assumed to be  0.2 cm away from the rectangular ridge.

The number of tetrahedra used to discretize the FEM region was 2718.  The number of higher

order modes considered in the input as well as the output waveguides were 40.

8 9 10 11 12 13 14
-30

-25

-20
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-5

0

S 1
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S 1
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(d
B

)

Frequency in GHz

Mode Matching  [19]

S12 calculated using eqn.(17)

S11calculated using eqn. (18)
S12calculated using eqn. (19)

Figure 4 Comparison of  magnitude of reflection and transmission coefficients calculat
      Finite Element Method and Mode Matching Techniques.
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X
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Z

Input Plane
P1

Output
Plane
P2

Metallic Ridge

W

h

b

a

L

a/2

Figure 5(a) Geometry of E-plane ridge discontinuity  in a rectangular waveguide .

Figure 5 (b) Cross sectional view of  E-plane ridge discontinuity in a rectangular waveguide
                    (W= 0.1016cm, h = 0.7619 cm, L = 0.508cm, a = 1.905 cm, b = 0.9524 cm)
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The third example considered for the validation of the present code is shown in Figure 7.

The reference planes P1 and P2 were assumed to be 0.5 cm away from the junction.  The FEM

region was discretized into 2700 tetrahedra and the number of higher order modes considered in

each waveguide was 40.  The reflection and transmission coefficients calculated using the present

code are presented in Figure 8 along with the earlier published data.  There is good agreement

between the earlier published data and the numerical results obtained using the present code.
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Figure 6 Transmission coefficient of E-plane ridge discontinuity in a rectangular
               waveguide shown in figure 5.
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Input Reference Plane
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Output Reference Plane
P2

TE 10Mode Out

TE 10Mode Incident

a2

b2
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Figure 7 Concentric step discontinuity in a rectangular waveguide; input waveguide
              dimension (a1 = 1.58 cm, b1  = 0.79 cm), output waveguide dimensions
             ( a2 = 2.29 cm, b2 = 1.02 cm)
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The discrepency in the results at higher frequencies may be due to the same discretization used for

lower and higher frequency range.  This causes the results to be less accurate at higher

frequencies.

Other discontinuities considered in this report are shown in Figures 9 - 13.  The input

reflection coefficients calculated using the FEM and MMM as described in the previous section
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S21 H-Formulation [11]

S21 Present Method

S11 Present Method

Figure 8 S11 and S21 parameters for the concentric step discontinuity in

rectangular waveguide shown in figure 7
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are presented in Figures 9 -13.   Number of higher order modes considered for MMM were 100

modes in input and output waveguides.  The number of modes considered  (in all of the problems

shown here) on the aperture were 20.  For FEM the number of elements used were approximately

1200.  The numerical results obtained using the FEM and MMM agree well with each other.

a=2.286 cm

b = 1.0 cm

a’ = 1.0 cm

b’ = 1.0 cm

Figure 9(a) Geometry of concentric rectangular waveguide with an inductive junction.
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Figure 9(b)  Input reflection coefficient of concentric inductive rectangular waveguide
                    junction  shown in figure 9(a).
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Figure 10(a) Geometry of concentric rectangular waveguide with a capacitive junction.
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Figure 10(b)  Input reflection coefficient of concentric capacitive rectangular waveguide
                    junction  shown in figure 10(a).

Frequency (GHz)

R
efl

ec
tio

n 
C

oe
ffi

ci
en

t FEM

Mode Matching Method

Imaginary Part

Real Part

a=2.286 cm

a’ = 2.286 cm

b’ = 1.0 cm

b = 1.0cm

Figure 11(a) Geometry of offset rectangular waveguide inductive junction.
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Figure 11(b)  Input reflection coefficient of offset inductive rectangular waveguide
                    junction  shown in figure 11(a).
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Figure 12(a) Geometry of offset rectangular waveguide capacitive junction.
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Figure 12(b)  Input reflection coefficient of offset capacitive rectangular waveguide
                    junction  shown in figure 12(a).
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The numerical results shown so far were related to the misalignments in the X-band

waveguide.  For a S-band waveguide, some typical misalignments analyzed using the FEM and

MMM  and compared with the measured data taken in the measurement laboratory of ERB  are

shown in Figures 14-16.  The measurements were done using the HP 8510 Network Analyzer.

For the FEM analysis the reference planes P1 and P2 were selected at 0.5 cm away from the junc-

tion.  The number of elements used in all cases were around 1258.  For the MMM  the number of

modes consided in both waveguides were 100, and the number of modes used to represent aper-

ture field were 20.
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Figure 13(b)  Input reflection coefficient of off-set rectangular waveguide
                    junction  shown in figure 13(a).
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Figure 14 Input reflection coefficient of inductive junction in a S-band rectangular
                 waveguide.
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Figure 15 Input reflection coefficient of capacitive junction in a S-band recatngular
                 waveguide.
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Figure 16 Input reflection coefficient of x- and y-offset  junction in a S-band rectangular
                 waveguide.
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 For application of the FEM to analyze gap  between two rectangular waveguide sec-

tions we consider S-band rectangular waveguide junction as shown in Figure 17..  The reflection

coefficient obtained using the present FEM procedure is presented in figure 17 along with the

measured results.
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Figure 17 Input reflection coefficient of S-band rectangular waveguide junction
                 with an air gap.
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The curve A in Figure 17 shows the input reflection coefficient obtained assuming  there

is no radiation through the gap aperture.  In this simulation the gap opening was not terminated

into metal boundary.  The curve B in Figure 17 was obtained by assuming the radiating gap aper-

ture is backed by an infinite ground plane.  The presence of infinite ground plane is taken into

account by considering magnetic current source  of amplitude twice that of magnetic current

present in the aperture.  The curve C in figure 17 shows the input reflection coefficient obtained

without an assumption of infinite ground plane.  In that case there was no factor two involved in

the amplitude of magnetic current source.  From the comparison of calculated and measured

results in figure 17 it may be concluded that not assuming the presence of infinite ground plane is

more appropriate.

 4.0 Conclusion

A FEM procedure has been presented to determine complex reflection and

transmission coefficients of rectangular waveguide junction discontinuities.  The discontinuities

that can be analyzed using the present procedure can be E-plane, H-plane, or both.  The present

procedure can also handle the air gap that may be present between the junctions of two

rectangular waveguides.  The numerical results obtained from the present method are compared

with earlier published results.   An excellent agreement between the numerical results obtained by

the present code and the earlier published data validates the present method and the code

developed.
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